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Abstract. We discuss the angular distribution of the lepton pair in the Drell–Yan process, hadron+hadron →
γ∗ +X → l+ + l− +X. This process gives information on the spin-density matrix ρ(q,q̄) of the annihilating
quark–antiquark pair in q + q̄ → l+ + l−. There is strong experimental evidence that even for unpolarised
initial hadrons ρ(q,q̄) is non-trivial, and therefore the quark–antiquark system is polarised. We discuss
the possibilities of a general ρ(q,q̄) – which could be entangled – and a factorising ρ(q,q̄). We argue that
instantons may lead to a non-trivial ρ(q,q̄) of the type indicated by experiments.

1 Introduction

In this note we discuss the question of factorisation in
the Drell–Yan process: [1]

h1(p1) + h2(p2) → γ∗(k) +X (1)

↪→ l+(q+) + l−(q−) .

Here, h1 and h2 are the initial hadrons, γ∗ is the virtual
photon, l+, l− are the final state leptons (l = e, µ) and
X stands for the hadronic final state particles. The four-
momenta are indicated in brackets. The basic underlying
process is the annihilation of a quark–antiquark pair:

q(k1) + q̄(k2) → γ∗(k) → l+(q+) + l−(q−) , (2)

which is sketched in Fig. 1. Here we focus on the discussion
of reaction (2) which is the lowest order process in the
framework of the QCD improved parton model; see for
instance [2]. For massless quarks we find that in (2) a
lefthanded quark qL can only annihilate with a righthanded
antiquark qR and vice versa.

The diagram of Fig. 1 is calculated by first evaluating
the amplitude for (2) and folding it then with the par-
ton distributions of the hadrons h1, h2. In early theoretical
work, one usually assumed that for unpolarised hadrons
h1, h2 the “parton beams” delivered by them are also unpo-
larised. We will call this the no-polarisation assumption. In
the simplest approximation one furthermore assumes the
partons q and q̄ to be strictly collinear with the hadrons
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Fig. 1. The generic Drell–Yan process

h1,2. This leads to a well known angular distribution of
the lepton pair in the rest frame of the virtual photon γ∗.
With the polar and azimuthal angles of the outgoing l+,
θ and φ, one gets

1
σ

dσ
dΩ

=
3

16π
(
1 + cos2θ

)
. (3)

Here and in (4) below we use the Collins–Soper reference
frame [3] where the γ∗ is at rest and the basis vectors e1,3
are defined by e1,3 = (p̂1±p̂2)/|p̂1±p̂2|, with p̂i = pi/|pi|.
The Collins–Soper frame is obtained from the h1, h2 CM
system by a rotation free boost.

In general, the angular distribution of the l+ is de-
scribed by three functions λ, µ, ν which may depend on
the kinematic variables of (1):
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1
σ

dσ
dΩ

=
3
4π

1
λ+ 3

(4)

×
(
1 + λ cos2θ + µ sin 2θ cosφ+

ν

2
sin2θ cos 2φ

)
.

The LO pQCD result (3) implies for the functions λ =
1, µ = ν = 0. Higher order corrections in αs change these
values. But within the standard framework and using the
no-polarisation ansatz one still finds [4] at NLO one relation
among the coefficients in (4):

1 − λ− 2ν = 0 . (5)

This Lam–Tung relation is almost unchanged at NNLO [5],
and even holds for the inclusion of parton transverse-
momentum and soft gluon effects [6]. However, the re-
lation (5) is drastically violated in experiments [7–9].

In [10, 11] two at first sight quite different ideas have
been proposed giving possible explanations for the viola-
tion of the Lam–Tung relation (5). It is the purpose of
the present article to give a short review and a detailed
comparison of these two approaches. We also sketch a cal-
culation of instanton effects for the Drell–Yan reaction and
pose some general questions concerning parton factorisa-
tion and entanglement.

2 Spin effects and factorisation

In [12] it was argued on general grounds that the assump-
tion of unpolarised parton beams from a reaction with
unpolarised initial hadrons is questionable due to possible
vacuum effects. In particular, it was speculated that the
fluctuating chromomagnetic vacuum fields which are due
to the nonperturbative vacuum structure in QCD might
lead to a correlated spin orientation of q and q̄ in (2) before
the annihilation. This would be in analogy to the Sokolov-
Ternov effect [13], well known from e+e− storage rings.

In [10] this idea was expanded upon and confronted with
experiments. A general two-particle spin-density matrix for
the qq̄ pair in (2) prior to the annihilation was assumed:

ρ(q,q̄) =
1
4

{
� ⊗ � + Fj (σ · e ∗

j ) ⊗ � (6)

+Gj� ⊗ (σ · e ∗
j ) +Hij(σ · e ∗

i ) ⊗ (σ · e ∗
j )

}
.

The quantities Fi, Gi and Hij are real functions of the
invariants of the problem. Here we work in the qq̄ CM
system and set

e ∗
3 =

k∗
1

|k∗
1|
,

e ∗
1 =

(p ∗
1 + p ∗

2 ) × e ∗
3

|(p ∗
1 + p ∗

2 ) × e ∗
3 | ,

e ∗
2 = e ∗

3 × e ∗
1 . (7)

Such a spin matrix will certainly affect the γ∗-production
cross section from a qq̄ state. The related production matrix

in the qq̄ CM system (the angular distribution of l+ arises
from the contraction with the lepton-production matrix) is

rγ∗
ij (k∗

1, ρ
(q,q̄); qq̄) =

∑
colours, spins

1
9
δAA′δBB′

×〈γ∗
i |T |q(k∗

1, α,A) q̄(−k∗
1, β, B)〉 ρ(q,q̄)

αβ α′β′

× 〈γ∗
j |T |q(k∗

1, α
′, A′) q̄(−k∗

1, β
′, B′)〉∗ . (8)

Here α, β, α′, β′ are the spin indices,A,B,A′, B′ the colour
indices andwehave assumednopolarisation in colour space.
In LO the amplitude for γ∗-production reads

〈γ∗
µ|T |q(k1, α,A) q̄(k2, β, B)〉

≡ 〈0|e Jµ(0)|q(k1, α,A) q̄(k2, β, B)〉
= eQq δAB v̄β(k2)γµuα(k1) . (9)

Here e Jµ is the hadronic part of the electromagnetic cur-
rent. The conventions for the Dirac spinors are as in [14]
with α = ±1/2 (β = ±1/2) representing the quark (anti-
quark) with spin orientation in the direction ±e ∗

3 .
With the standard no-polarisation assumption in spin

space, one sets

ρ(q,q̄)
∣∣
naive =

1
4

(� ⊗ �) ≡ 1
4

(δαα′ δββ′) . (10)

It was shown in [10] that a non-zero correlation coefficient,

κ ≡ H22 −H11

1 +H33
, (11)

could easily explain the experimentally observed deviation
from the Lam–Tung relation. Indeed, defining

κ̄ ≡ − 1
4

(1 − λ− 2ν) , (12)

one finds instead of (5) with (6) and (11)

κ̄ ≈ 〈κ〉 . (13)

Here the average is over the parton longitudinal and trans-
verse momenta [10]. In (13) we do not have an equality sign
since higher order perturbative contributions give already
a (very) small contribution to κ̄ even for κ = 0.

A good fit to the data of [7, 8] could be obtained with
the simple ansatz

κ = κ0
|kT|4

|kT|4 +m4
T
, κ0 = 0.17 , mT = 1.5 GeV , (14)

where kT is the γ∗ transverse momentum in the hadronic
CM system.

In [10] simplifying assumptions for the density ma-
trix (6) were made:

F2 = F3 = G2 = G3 = H12 = H13 = H21 = H31 = 0 .
(15)
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This is irrelevant for the Drell–Yan process (2). One can
easily show that the l+ angular distribution is only sensitive
to the two parameters H33 and κ.

Further discussions of possible QCD vacuum effects for
the Drell–Yan and other reactions were given in [15,16].

The problem of the angular distribution in the Drell–
Yan process was attacked from a different side in [11]. It
was pointed out that there can be non-trivial spin and
transverse-momentum correlations even inside an unpo-
larised hadron. In the notation of [11] the distribution of
quarks (with lightcone momentum fraction x1 and trans-
verse momentum k1T) inside an unpolarised hadron h1
(with momentum p1 and mass M1) is given by a correla-
tion function Φ(x1,k1T), parametrised as follows:

Φ(x1,k1T) = f1(x1,k
2
1T)

γ−

2
+ h⊥

1 (x1,k
2
1T)

i�k1T γ
−

2M1
,

(16)
where the transverse momentum is with respect to the
plane spanned by the hadron momenta p1 and p2 in the
hadronic centre of mass frame. In that frame p1 and p2
are predominantly in the lightlike n+ and n− directions,
respectively. For details we refer to [11,17].

The function h⊥
1 is the distribution of transversely po-

larised quarks with non-zero transverse momentum inside
an unpolarised hadron. The subscript 1 on f1 and h⊥

1 indi-
cates that these functions contribute at leading twist and
should not be confused with the hadron label. The anti-
quark correlation function Φ(x2,k2T) is parametrised ac-
cordingly:

Φ(x2,k2T) = f̄1(x2,k
2
2T)

γ+

2
+ h̄⊥

1 (x2,k
2
2T)

i�k2T γ
+

2M2
.

(17)
The quark spin-density matrix ρ(q) can be obtained

by projecting Φ(x1,k1T) onto the basis (ψ+R, ψ+L), i.e.
the right and left chirality components of the good field
ψ+ = 1

2 γ
−γ+ψ (see for instance [18,19]); and analogously

for Φ(x2,k2T) and the antiquark spin-density matrix ρ(q̄).
For given k1T and k2T one can boost to the frame (7),
which leads (after appropriate normalisation) to

ρ(q) =
1
2

{
� +

h⊥
1

f1

x1

M1
(e ∗

3 × p ∗
1 ) · σ

}
≡ 1

2
{
� + Fj (σ · e ∗

j )
}
,

ρ(q̄) =
1
2

{
� − h̄⊥

1

f̄1

x2

M2
(e ∗

3 × p ∗
2 ) · σ

}
≡ 1

2
{
� +Gj (σ · e ∗

j )
}
. (18)

For simplicity we have suppressed the arguments of
the functions.

From (18) we arrive at F3 = 0 = G3 and for i = 1, 2 at

F1 = −h⊥
1

f1

x1

M1
p ∗

1 · e ∗
2 , F2 = +

h⊥
1

f1

x1

M1
p ∗

1 · e ∗
1 ,

G1 = +
h̄⊥

1

f̄1

x2

M2
p ∗

2 · e ∗
2 , G2 = − h̄⊥

1

f̄1

x2

M2
p ∗

2 · e ∗
1 .

(19)

One observes that the function h⊥
1 enters in the off-diagonal

elements of ρ(q) and thus corresponds toRLandLRdensity-
matrix elements.

In the approach followed in [11], the qq̄ spin-density
matrix is given by the tensor product of these two non-
trivial one-particle spin-density matrices,

ρ(q,q̄) = ρ(q) ⊗ ρ(q̄) . (20)

Clearly, non-zero h⊥
1 implies that the standard no-polari-

sation ansatz (10) does not hold. Comparison of (20) and
(18) with (6) shows that here Hij = FiGj for i, j = 1, 2, 3,
and hence Hi3 = 0 = H3i (due to F3 = 0 = G3).

The factorisation (20) of the spin-density matrix ρ(q,q̄)

is usually implicitly assumed once factorisation of the de-
pendences on hard and soft energy scales is demonstrated
for a process. See for instance [20] for a discussion of factori-
sation of the spin-density matrix in the polarised Drell–Yan
process (cf. in particular its (14)). For earlier discussions of
issues concerning factorisation for processes where trans-
verse momenta play a role see e.g. [21]. As said, for un-
polarised hadrons it is standard to choose Fi = 0 = Gi.
Using instead Fi and Gi of (19) in a tree level calculation
of the Drell–Yan process leads to λ = 1, µ = 0 and ν �= 0.
The general expression for ν in terms of h⊥

1 is given in [11],
but here we will restrict to the case of Gaussian transverse-
momentum dependence for illustration purposes. We as-
sume that all transverse-momentum-dependent functions
are of the form

f(xi,k
2
iT) = f(xi) exp

(
−R2k2

iT
) R2

π
. (21)

Moreover, we assume that the width of the Gaussian is
the same for f1 and f̄1 (the width will be called R2

f ) and
similarly for h⊥

1 and h̄⊥
1 (the width will be called R2

h and
should be larger than R2

f in order to satisfy a positivity
bound). This then leads to

κ̄ =
ν

2
=

R2
h

4R2
f

k2
T

M1M2
exp

(
−

[
R2

h −R2
f

] k2
T

2

)

×
∑

a e
2
a h

⊥a
1 (x1)h⊥ā

1 (x2)∑
a e

2
a f

a
1 (x1)f ā

1 (x2)
, (22)

where κ̄ ≡ −(1−λ−2ν)/4 and ea = eQq; see (12) and (9).
We find again that the deviation from the Lam–Tung rela-
tion arises from an average κ (albeit in addition to higher
order perturbative corrections). In (22) ea denotes the
charge of the quark with flavour a; the sum is over flavours
and antiflavours (indicated by ā); and, we have used that
f̄a = f ā, i.e. the distribution of antiquarks of flavour ā
inside a hadron h is equal to the distribution of quarks of
flavour a inside an antihadron h̄.

Setting R2
f = 1 GeV−2 and fitting the NA10 data [8] as

done in [11], leads to a good fit for R2
h −R2

f = 0.17R2
f and〈∑

a e
2
a h

⊥a
1 (x1)h⊥ā

1 (x2)∑
a e

2
a f

a
1 (x1)f ā

1 (x2)

〉
= 0.02 , (23)



58 D. Boer et al.: Factorisation, parton entanglement and the Drell–Yan process

where we consider the average over x1 and x2. Assuming
u-quark dominance and h⊥

1 /f1 ≈ h̄⊥
1 /f̄1, this leads to the

reasonable result that on average h⊥
1 is approximately 14%

of the size of f1.
This result is of course dependent on the assumptions,

but it serves the purpose of illustrating that the data can in
principle be explained by a non-zero h⊥

1 . Hence, in order to
experimentally discriminate between the two approaches
of [10,11], more data are clearly needed, either from other
kinematic regions or from other processes. In the next sec-
tion we will elaborate on what is required and what are
the opportunities for distinguishing between the two ap-
proaches.

3 Comparison of the two approaches

In this section we compare the approaches of [10,11]. Let us
first of all emphasise that the ansatz of [11], given by (18)
to (20) is perfectly compatible with the general ansatz (6)
put forward in [10], but restricts ρ(q,q̄) to be factorising.

There is a further restriction in the ansatz (18) to (20).
It requires F3 = G3 = 0. This comes about as follows. The
correlation function Φ in (16) for the hadron h1 is supposed
to depend only on the momenta p1, p2, k1 (actually only on
the direction of p2), the correlation function Φ for h2 only
on p2, p1, k2. From three four-vectors we can only form one
axial vector in each case,

aµ
1,2 = εµνρσp1ν p2ρ k1,2 σ. (24)

To form a pseudoscalar invariant we need all four indepen-
dent four-vectors:

A = εµνρσp1µ p2ν k1ρ k2σ . (25)

Now F3 and G3 are in essence measuring the degree of
longitudinal polarisation of the quark q and antiquark q̄.
Therefore, due to parity invariance of the strong interac-
tion, F3 and G3 must be pseudoscalar quantities and thus
linear in A (25). But in the ansatz (19) and (20) F3 arises
from the correlation function Φ of hadron h1, see (16), and
can thus only depend on three four-vectors, from which
we cannot form a pseudoscalar invariant. Thus, with the
ansatz (18) to (20), F3 must be zero. The same holds for
G3. Therefore, the ansatz of [11] implies F3 = G3 = 0 and
due to the factorisation of the qq̄ matrix H33 = 0. In the
general ansatz of [10] the density matrix can from the out-
set depend on all four four-vectors of the problem, there
is a pseudoscalar invariant (25) available, and F3, G3 do
not have to vanish. Obviously, also H33 does not need to
be zero in the general approach.

As mentioned in Sect. 2, the Drell–Yan reaction (2) is
only sensitive to the density-matrix element H33 and the
combination κ (see (11)). Therefore, one way to check if
the restricted form (20) of ρ(qq̄) is actually realised would
be to measure H33. But, as already mentioned in [10], the
normalised angular distribution (4) of the lepton pair is
practically only sensitive to κ. A factor of 1+H33 enters in
the cross section formula but influences mainly the absolute

normalisation. This latter effect is difficult to measure due
to uncertainties in the quark and antiquark distributions
and in higher order contributions giving rise to the so-called
K-factors. Thus we are left with one relevant parameter κ.

Different physical mechanisms were proposed in [10,
11] to produce a non-trivial qq̄ density matrix with κ �=
0. In [10] it was suggested that effects of the non-trivial
QCD vacuum may be responsible for κ �= 0. In [22, 23]
model calculations using the general framework of [11] were
performed showing that initial-state gluon exchange can
produce κ �= 0.

Let us see if on general grounds we can expect different
behaviour for the observable quantity κ̄ (12) from these two
physical pictures. One possibility for comparison would be
to study κ̄ as a function of kT. The ansatz given in (14)
– taken literally – implies that κ̄ ≈ κ0 for large kT. This
is a very different behaviour than that expected from an
underlying h⊥

1 function, which is assumed to vanish for
large quark transverse momentum, in accordance with the
ansatz of factorisation of hard and soft energy scales in
the process. This forces κ̄ to vanish (at least at tree level)
in the limit of large |kT|. Higher order αs corrections may
modify this conclusion. However, as mentioned the NNLO
corrections were shown to be small [5, 10]. Their (nega-
tive) contribution to κ̄ was found to be well below 1%
for |kT| values up to 3 GeV (see Fig. 6 of [10]). Therefore,
one expects κ̄ (possibly corrected for the small higher or-
der perturbative contributions) to decrease. A constant κ̄,
that is both positive and large, for large kT would therefore
be irreconcilable with the approach of [11]. In the general
framework of [10] such a behaviour for κ̄ would be possible
but is certainly not required.

The dependence of κ̄ on the other scale in the process,
the lepton pair invariant mass (denoted by mγ∗ in [10] and
by Q in [11]), may also be different in the two approaches.
Unfortunately it is not clear what would be the generic
Q2 behaviour of κ̄ due to vacuum effects. Regarding κ̄
arising from non-zero h⊥

1 , the expectation is that it will
decrease approximately as 1/Q for large Q. This is based
on results from [24], where the influence of soft gluons on
similar azimuthal spin asymmetries was considered. This
means that although κ̄ is not power suppressed at tree level,
higher order αs contributions effectively give rise to power
suppression. Note that this is quite different from dynam-
ical higher twist contributions, such as discussed in [25],
which typically lead to ν ∼ O(〈k2

T〉/Q2) and therefore,
are expected to be important only for Q values smaller
than the experimentally measured range from 4 GeV up to
12 GeV. In any case, the fall-off or persistence of κ̄ with
increasing Q could be a discriminating feature, similar to
the kT dependence.

A further possibility to differentiate between the two
approaches is to investigate a possible flavour dependence
of κ̄ by varying the types of beams (π±, p, p̄). Clearly
vacuum effects do not favour a flavour dependence. On the
other hand, if the ratio h⊥

1 /f1 varies for different flavours
and different hadrons, then this could lead to an observable
flavour dependence. Thus far only π−N data have been
published, although [9] mentions also to have data for a
π+ beam at the same energy.
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Both vacuum effects and non-zero h⊥
1 could lead to a κ̄

that varies as a function of (x1, x2). In addition, observable
flavour dependence of this xi dependence would arise if
the ratio h⊥

1 (xi)/f1(xi) varies differently as a function of x
for different flavours and different hadrons. This includes
the possibility that h⊥

1 (xi)/f1(xi) changes its sign as a
function of xi, which would lead to sign changes in κ̄ as
a function of (x1, x2), even when restricting to only one
particular process.

As a last point in this discussion we mention that since
the approach of [11] is based on a factorised qq̄ spin-
density matrix (20), one can test this type of factorisa-
tion by measuring several related processes, such as semi-
inclusive deep-inelastic lepton–nucleon scattering, where
the h⊥

1 function enters in combination with other func-
tions [26, 27]. See also [28, 29]. In principle one can deter-
mine as many observables as unknown functions in order
to extract h⊥

1 and test the consistency of the factorised
approach. Needless to say, this is quite a formidable task,
but outlines of such a scheme have been discussed in some
detail in [17].

Clearly it will also be very interesting to compare the
predictions of the approaches of [10,11] for other Drell–Yan
type processes, for instance Z-production as well as γ∗ +
jet and Z+ jet production in hadron–hadron collisions.

4 Instanton model

Thus far we have explained in a rather general way, how a
violation of the Lam–Tung relation (5) can arise, if the stan-
dard ansatz (10) does not hold. In both approaches [10,11]
the strength of the violation follows directly from a compar-
ison with the experiment. It would be of great interest to
calculate the relevant parameter describing the asymmetry
(namely κ) in a certain model. For the approach of [11]
this has been done in [22, 23] using a spectator model. It
was shown that initial-state gluon exchange could give rise
to a non-zero h⊥

1 and a corresponding κ̄ for the pp̄ and
π−p initiated Drell–Yan process. In this section we want
to take a different approach, namely to outline a model
calculation that is along the lines of [10].

We already discussed the possibility that in a non-trivial
vacuum the spins of the partons might be correlated. An
intriguing possibility to describe the vacuum structure is
given by instantons. Instantons [30] are nonperturbative
fluctuations of the gluon fields and well known to induce
chirality-violating processes, absent in conventional per-
turbation theory [31]. Especially this feature of instanton-
induced processes is a strong motivation to study the role
of instantons as a source of spin correlations. Along similar
lines, various remarkable effects induced by instantons were
investigated. One can find for instance in [32] an estimate
of certain single spin asymmetries and in [33] an estimate
of the Pauli form factor of the quark. One also expects
an impact of instantons on the question how the proton
spin is built up from the spin and angular momenta of
the constituents, see e.g. [34] or the review [35]. Recently,
an estimate of an azimuthal spin asymmetry induced by
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Fig. 2. The instanton-induced process qL + qL → γ∗ +
(nf − 1) [qR + qR] + ng g

instantons in semi-inclusive deep-inelastic scattering was
presented in [36].

In a rather qualitative way, the Drell–Yan process was
already investigated in an instanton background in [37].
There it was argued that even in the limit of high energy,
instantons may lead to sizable effects, not suppressed by
inverse powers of the energy. But it should be mentioned
that spin effects do not play any specific role in [37].

Here, we want to emphasise that instantons might in-
deed violate the naive ansatz (10) via some additional terms
to the spin matrix. The generic instanton-induced chirality-
violating process which contributes in the Drell–Yan case
reads for nf active flavours (see (2) for the similar process
in usual perturbation theory)

qL + qL → γ∗ + (nf − 1) [qR + qR] + ng g (26)

and is sketched in Fig. 2. The indices indicate the helicity
of the quarks and antiquarks in the process. Of course,
the process with R and L exchanged everywhere – induced
by antiinstantons – must also be taken into account. The
important point in our approach is not the significant com-
plication of the final state in (26) which contributes to the
final state X in (1), but the different helicity structure in
the initial state.

We mentioned in Sect. 1 that neglecting quark masses
in the process (2) only a quark and an antiquark with
different helicities couple to the photon. So one can split
the process (26) into two stages: during the first stage,
the quark (or the antiquark) will change the helicity and
afterwards the quark (antiquark) will interact in the usual
way with the antiquark (quark). The final state will only
change the size of the whole instanton contribution but not
the structure of the related spin matrix ρ(q,q̄).

In Fig. 2 we show the two amplitudes contributing to
the process (26) and for each amplitude the split into two
stages. In the left part (labelled in (27) with (t)) the in-
coming quark changes the helicity. The right part (u) is
of course similar but the incoming antiquark changes the
helicity. It is sketched that both amplitudes factorise into
an instanton part described by the coefficients a(I) and b(I)

and chirality-conserving amplitudes, namely 〈γ∗
µ|T |qR qL〉

or 〈γ∗
µ|T |qL qR〉.
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For the simplest instanton-induced process with nf = 1
and ng = 0 (see [38] for a detailed calculation of the related
process in lepton–hadron scattering) one would expect a
trivial connection betweena(I) and b(I). For the general case
this will change because of the more complex kinematics,
related to the additional momenta of the final state partons.

The important point is that the two processes shown
in Fig. 2 lead from the same initial to the same final states.
Therefore these amplitudes must be added coherently. This
gives in the cross section a term(

T (t)
µ LL + T (u)

µ LL

) (
T (t)

ν LL + T (u)
ν LL

)∗

=
∣∣∣a(I)

∣∣∣2 〈γ∗
µ|T |qR qL〉〈γ∗

ν |T |qR qL〉∗

+a(I) b(I) ∗ 〈γ∗
µ|T |qR qL〉〈γ∗

ν |T |qL qR〉∗

+a(I) ∗ b(I) 〈γ∗
µ|T |qL qR〉〈γ∗

ν |T |qR qL〉∗

+
∣∣∣b(I)

∣∣∣2 〈γ∗
µ|T |qL qR〉〈γ∗

ν |T |qL qR〉∗ . (27)

Comparing the general amplitude (8) with the instanton-
induced one (27), we get the following expressions for the
density-matrix elements (the factor 1/4 arises from the
averaging over the initial-state helicities):

ρ
(I)
RL RL =

∣∣a(I)
∣∣2

4
, ρ

(I)
LR LR =

∣∣b(I)
∣∣2

4
,

ρ
(I)
RL LR =

a(I) b(I) ∗

4
, ρ

(I)
LR RL =

a(I) ∗ b(I)

4
. (28)

For the calculation of the spin matrix, we have to add the
contribution from the usual process without instantons
in the background. The naive expectation related to (10)
is ρLR LR|naive = ρRL RL|naive = 1/4 and ρRL LR|naive =
ρLR RL|naive = 0. Adding this to the instanton-induced
contribution we get finally

κ = − ρRL LR + ρLR RL

ρRL RL + ρLR LR
= −

2 Re
(
a(I)b(I) ∗)

2 + |a(I)|2 + |b(I)|2 . (29)

An estimate of κ in the simplest case where nf = 1 and
ng = 0 leads to κ �= 0 and we expect the same to be true
in general.

We want to mention that one can expect contribu-
tions to κ also from instanton-induced processes without
any additional partons in the final state. In this case an
instanton–antiinstanton pair is located only on one side of
the cut appearing in the contributions to the cross section
(in contrast to the squared amplitudes in Fig. 2 where one
instanton will appear on each side of the cut). Hence, the
quark and the antiquark will change the helicity on one side
of the cut and we will also get off-diagonal contributions.

We summarise: The flipping of the helicity of one quark
or antiquark in the initial state which occurs in the instan-
ton-induced contribution to the Drell–Yan process should
give rise to a non-zero matrix Hij in (6) and finally to
κ. As already mentioned, the Drell–Yan process (2) is not

sensitive to Fi andGi, hence we cannot say anything about
instanton-induced contributions toFi andGi. A more care-
ful analysis of the instanton-induced contributions to the
Drell–Yan process including the complete final state in (26)
is beyond the scope of the present paper. This and the
question whether the instanton-induced processes lead to
a factorising or entangled qq̄ density matrix will be inves-
tigated elsewhere.

5 Summary

In this paper we have discussed the angular distribution of
the lepton pair in the Drell–Yan process (1). We considered
the lowest order reaction (2) and studied the influence of
the quark–antiquark spin-density matrix on the lepton’s
angular distribution.

It is well known that a trivial spin-density matrix (10)
is disfavoured by experiment [7–9]. Experiments are well
described by qq̄ spin-density matrices having the coefficient
κ �= 0. This can be achieved by a qq̄ density matrix which
is factorising into non-trivial q and q̄ single-particle density
matrices, as assumed in the ansatz of [11]. The ansatz of [10]
is perfectly compatible with this, but would allow also for
truly entangled qq̄ pairs, that is a two-particle spin-density
matrix which cannot be written as a tensor product of one-
particle matrices. We have made a detailed comparison of
the approaches [10,11] andhave shownhow they are related.
We have discussed the underlying physical ideas and have
outlined ways to check these ideas experimentally.

We have discussed instanton effects on the quark–anti-
quark density matrix and argued that these could induce
spin correlations of the type indicated by experiments.
The question whether instantons lead to a factorising or
an entangled qq̄ density matrix will be studied elsewhere.

We think that it is an important question to follow up
how to determine from experiments the complete qq̄ den-
sity matrix. For this other reactions besides the Drell–Yan
process clearly are needed. We have given some discussion
of this issue in Sect. 3. It would be fascinating if the qq̄ den-
sity matrix turned out to be entangled. Thus, in this article
we want to pose the question: can there be entanglement
at the parton level in hadronic reactions?
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